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a  b  s  t  r  a  c  t

The  subject  of  this  paper  is a procedure  for the identification  (detection,  discovery)  of  atypical  elements,
understood  in  the sense  that they  occur  rarely.  A result  of  the  procedure  is the  generation  of  a  rating
as  to  whether  an  examined  observation  should  be classed  as  atypical,  given  in  classic  two-values  form
(deterministic,  sharp),  as well  as  fuzzy  or  intuitionistic  fuzzy.  Moreover,  the  task  of  identifying  atypical
elements,  unsupervised  in  its basic  formula,  can  − as  a result  of  the  procedure  −  be brought  to a  super-
vised  form,  which  allows  well-developed  diverse  methods  of supervised  classification  to be  used.  The
investigated  method  is  independent  of  distribution  existing  in  a population  and  enables  the  detection  of
atypical  elements  not  only  occurring  in  the  tails,  but  also  − e.g.  for multimodal  distributions  with  more
utlier
typical elements detection
istribution-free method
uzzy set
ntuitionistic fuzzy set
lassification

distant  factors  − potentially  located  inside.  The  procedure  is  presented  in  ready-to-use  form  and  does
not  require  laborious  research  or literary  study.  The  correctness  of  its functioning  has  been  examined  in
practical  medical  problems.

©  2017  Elsevier  B.V.  All  rights  reserved.
edical applications

. Introduction

The task of identifying atypical elements is one of the funda-
ental problems of contemporary data analysis [1]. Its present

ignificance is growing, particularly in relation to today’s common
utomatic way of measuring, transferring, collecting and process-
ng information, as it omits the need for human perceptiveness and
hought in detecting potential anomalies.

The occurrence of atypical elements can be interpreted in two
ays. The first, and more popular, associates them with gross errors

andicapping some elements of the set being considered. They
re then eliminated or corrected. In this case the identification
f atypical elements can be termed detection, which is generally
onnoted with negative occurrences. In the second, less common
et more constructive, atypical elements represent unconventional

henomena, exceptional items and new trends. They then pro-
ide exceptionally valuable information, and stimulate nontrivial
ehaviors and innovative thinking. In order to cover this case, it is

∗ Corresponding author.
E-mail addresses: kulczycki@ibspan.waw.pl, kulczycki@agh.edu.pl

P. Kulczycki).

ttp://dx.doi.org/10.1016/j.asoc.2017.06.024
568-4946/© 2017 Elsevier B.V. All rights reserved.
worth replacing the notion of “detection” with the more neutral
“identification”, as is done throughout this text.

There is no one definition of atypical elements. The most general
is that they are observations originating from a distribution other
than the remaining population. However, this view does not help
to recognize them in a specific dataset. The above definition is most
often refined by the classic notion of “outliers”, to a distance-based
concept, indicating those elements furthest from the majority. This
paper will apply the frequency approach, whereby atypical ele-
ments are rare, i.e. the probability of their appearance is faint. Thus,
we can identify atypical observations not only on the peripheries
of the population, but in the case of multimodal distributions with
wide-spreading segments, also those lying in between these seg-
ments, even if close to the center of the set (see Fig. 1 later).

A detailed review of notions and methods associated with atyp-
ical observations can be found in the classic monographs [2,3] as
well as the survey paper [4]. Their identification enjoys comprehen-
sive practical application in all disciplines. In medical tasks results
deviating from standards may  infer dangers, illness or pathologies,

in technology they determine faults in a dynamic system under
supervision, in archeology − a different origin of artefacts, in bank-
ing − attempted fraud. Atypical elements can also indicate threats

dx.doi.org/10.1016/j.asoc.2017.06.024
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2017.06.024&domain=pdf
mailto:kulczycki@ibspan.waw.pl
mailto:kulczycki@agh.edu.pl
dx.doi.org/10.1016/j.asoc.2017.06.024
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o public order, meteorological anomalies, earthquakes, changes in
limate and ecological dangers.

As mentioned before, the subject of this paper is the identifi-
ation of elements atypical in the sense of rare occurrences in the
opulation. Using a representative set of data, we select regions of

owest distribution density, and in such a way that total probabil-
ty of an observation appearing in these regions equals an assumed
alue, e.g. 0.01, 0.05, 0.1. Elements belonging to these sets will
e treated as atypical (rare). An evaluation of whether the tested
lement should be termed atypical can be given in the classic
wo-values form (deterministic, sharp) as well as fuzzy [5] and intu-
tionistic fuzzy [6]. The procedure is designed on the basis of the
onparametric kernel estimators method [7,8], which frees it from
he distribution characterizing the population under consideration.
he subject material is ready-to-use without laborious research. Its
asy and illustrative interpretation is particularly valuable.

Section 2 presents the statistical kernel estimators method-
logy. Then, the basic formula of the procedure for identifying
typical, i.e. rarely occurring, elements is described in Section 3.
ue to difficult conditioning, mainly stemming from a naturally
ery low number of elements considered atypical, the quality of the
rocedure is considerably improved in Section 4 by significantly

ncreasing the set of elements representative for the population.
ext, in Section 5, patterns of atypical and typical elements, equal

n size, will be generated, which form the basis for the effective
reation of a fuzzy and intuitionistic fuzzy assessment also for
isadvantageous parameter values, as well as the convenient appli-
ation of a well-developed, valuable and distinctive classification
ethod, according to the researcher’s preferences and specifics

f the task under investigation. In this way, in and of itself the
nsupervised task of identification (detection) of atypical elements
outliers) is brought to the much more convenient supervised prob-
em of classification with equal-sized patterns. In Section 6 the
unction of the procedure is verified using artificially generated
llustrative data, and in the subsequent Section 7 based on medical
ata. The paper finishes with Section 8 as a summary containing

 detailed sequence of steps for applying the method investigated
ere.

The preliminary version of this paper was partially presented as
he publications [9,10].

. Nonparametric kernel estimators

In the presented method, the characteristics of a data set will
e defined using the nonparametric methodology of kernel esti-
ators. It is distribution-free, i.e. the preliminary assumptions

oncerning the types of appearing distributions are not required. A
road description can be found in the monographs [7,8]. Exemplary
pplications for data analysis tasks are described in the publications
11–15]; see also [16,17].

Let the n-dimensional continuous random variable X be given,
ith a distribution characterized by the density f. Its kernel estima-

or f̂  : Rn → [0,  ∞), calculated using the experimentally obtained
-element random sample xi ∈ Rn for i = 1, 2, ... , m,  in its basic form

s defined as

 ̂ (x) = 1
mhn

m∑
i=1

K
(
x − xi
h

)
, (1)

here m ∈ N\{0}, the coefficient h > 0 is called a smoothing param-
ter, while the measurable function K:Rn → [0, ∞)  of unit integral
n K(x) dx = 1, symmetrical with respect to zero and having a weak
R
lobal maximum in this place, takes the name of a kernel. The choice
f form of the kernel K and the calculation of the smoothing param-
ter h value is made most often with the criterion of the mean
ntegrated square error.
ft Computing 60 (2017) 623–633

Thus, the choice of the kernel form has − from a statistical point
of view − no practical meaning and thanks to this, it becomes pos-
sible to take into account primarily properties of the estimator
obtained or computational aspects, advantageous from the point of
view of the applicational problem under investigation; for broader
discussion see the books [7 – Section 3.1.3], [8 – Sections 2.7
and 4.5]. In the one-dimensional case (i.e. when n = 1) the normal
(Gauss) kernel

Kj(x) = 1√
2�

exp

(
−x

2

2

)
(2)

and the uniform kernel

Kj(x) =

⎧⎨
⎩

1
2

for x ∈ [−1, 1]

0 for x /∈ [−1, 1]
(3)

will be used in the following. The normal kernel is generally held
as basic. The uniform kernel has bounded support and assumes a
finite number of values, which will be taken advantage of later in
this paper. In the multidimensional case, a so-called product kernel
will be applied in the following. The main idea here is the divi-
sion of particular variables with the multidimensional kernel then
becoming a product of n one-dimensional kernels for particular
coordinates. Thus the kernel estimator (2) is then given as

f̂ (x) = 1
mh1h2...hn

m∑
i=1

K1

(
x1 − xi,1
h1

)
K2

(
x2 − xi,2
h2

)
...Kn

(
xn − xi,n
hn

)
, (4)

where Kj (j = 1, 2, . . .,  n) denote one-dimensional kernels, e.g. (2) or
(3), hj (j = 1, 2, . . .,  n) are smoothing parameters individualized for
particular coordinates, while assigning to coordinates

x =

⎡
⎢⎢⎢⎢⎣
x1

x2

...

xn

⎤
⎥⎥⎥⎥⎦ and x =

⎡
⎢⎢⎢⎢⎣
xi,1

xi,2

...

xi,n

⎤
⎥⎥⎥⎥⎦ for i = 1, 2, . . .,  m.  (5)

The above kernels fulfil the additional requirements of the partic-
ular procedures used in the following.

The fixing of the smoothing parameter has significant meaning
for quality of estimation. Fortunately many suitable procedures for
calculating its value on the basis of a random sample have been
worked out. For the purposes of the research investigated here, the
simplified method [7 − Section 3.1.5], [8 − Section 3.2.1] will be
applied, according to which

hj =
(

8
√
�

3
W(Kj)

U(Kj)
2

1
m

)1/5

�̂j for j = 1, 2, . . .,  n, (6)

where W(Kj) =
∫ ∞

−∞ Kj(x)
2 dx and U(Kj) =

∫ ∞
−∞ x

2Kj(x) dx, while �̂j
denotes the estimator of a standard deviation for the j-th coordi-
nate:

�̂j =

√√√√ 1
m − 1

m∑
i=1

x2
i,j

− 1
m(m − 1)

(
m∑
i=1

xi,j

)2

for j = 1, 2, . . .,  n. (7)

As shown in verification testing for the purposes of the procedure
worked out here, this method seems to be sufficiently precise, and
furthermore it is simple and fast. The functional values occurring

in formula (6) are, respectively, for normal kernel (2)

W(Kj) = 1
2
√
�
, U(Kj) = 1 (8)
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nd for uniform (3)

W(Kj) = 1
2
, U(Kj) = 1

3
. (9)

or specific cases the more sophisticated yet effective plug-in
ethod [7 − Section 3.1.5], [8 − Section 3.6.1] can be also proposed.

t is provided for one-dimensional tasks but, of course, this method
an be also applied in the n-dimensional case when a product kernel
s used, sequentially n times for each coordinate.

In practice, various modifications and generalizations of the
tandard form of the kernel estimator presented above are possible,
tting its properties to specific realities. It is worth remembering
owever, that they increase in complexity of formulas, their inter-
retation becomes more difficult and in consequence the problem

s less convenient for potential users to solve. For many aspects con-
erning the kernel estimators method, see the classic monographs
7,8].

. Basic version of procedure

The basic idea of the presented procedure for identification of
typical elements stems from the significance test proposed in the
ork [18]. Thanks to the application of nonparametric methods

t is unnecessary to introduce arbitrary assumptions concerning
istribution type for an examined population.

Let the set be given, with elements representative for the pop-
lation

1,x2, . . .,xm. (10)

reat these elements as realizations of the n-dimensional contin-
ous random variable X with distribution having density f and
alculate − in accordance with Section 2 (using a normal kernel) −
he kernel estimator f̂ .  Next consider the set of its value for elements
f set (10), so

 ̂ (x1), f̂ (x2), ..., f̂ (xm). (11)

t is worth noticing that, regardless of the dimension of the ran-
om variable X, the values of set (11) are real (one-dimensional).
articular values f̂ (xi) characterize the probability of occurrence of
he element xi, therefore the lower the value f̂ (xi), the more the
lement xi can be interpreted as “less typical”, or rather happening
ore rarely.

Define now the number

 ∈ (0,  1) (12)

stablishing sensitivity of the procedure for identifying atypical
lements. This number will determine the assumed proportion of
typical elements in relation to the total population, and therefore
he ratio of the number of atypical to the sum of atypical and typical
lements. From the above interpretation one can infer that in most
ractical applications the value of parameter (12) may  be bounded
y the inclusion

 ∈ (0,  0.2]. (13)

n practice

 = 0.01, 0.05, 0.1 (14)

s the most often used, with particular attention paid to the second
ption. Despite the proposed methodology’s ability to be applied
ithout hindrance to condition (12), more general than (13), it
ould require a solution for many cases, which are in fact irrel-
vant from an applicational point of view. It is worth noticing that
or r > 0.5, the atypical elements would be typical and vice-versa.

Let us treat set (11) as realizations of a real (one-dimensional)
andom variable and calculate the estimator for the quantile of the
ft Computing 60 (2017) 623–633 625

order r. The positional estimator of the second order [19,20] will be
applied in the following, given by the formula

where

i = [mr + 0.5], (16)

while [d] denotes an integral part of the number d ∈ R, whereas zi
is the i-th value in size of set (11) after its sorting, thus

{z1, z2, ..., zm} = {f̂ (x1), f̂  (x2), ..., f̂ (xm)} (17)

with z1 ≤ z2 ≤ ... ≤ zm. Application of the positional quantile estima-
tor guarantees its value does not exceed beyond support of the
random variable under investigation, or rather to be more precise,
thanks to the use of kernel (2) with positive values q̂r > 0 is fulfilled.

Generally there are no special recommendations concerning
choice of sorting algorithm [21] used for specifying set (17). How-
ever, let us interpret definition (15)-(16), taking into account
relations (13)-(14). So, it is enough to sort only the i + 1 smallest
values in the set {z1, z2, . . .,  zm}, therefore in practice about 1–10%
of its size. One can apply a simple algorithm consisting in subse-
quently finding the i + 1 smallest elements of the set {z1, z2, . . .,
zm}.

Finally, if for a given tested element

x̃ ∈  Rn (18)

the condition

f̂ (x̃) ≤ q̂r (19)

is fulfilled, then this element should be considered atypical; for the
opposite

f̂ (x̃) > q̂r (20)

it is typical. What is noteworthy is that for the correctly estimated
quantities f̂ and q̂r , the above guarantees obtaining the propor-
tion of the number of atypical elements to total population at the
assumed level r.

The above procedure for identifying atypical elements, com-
bined with the properties of kernel estimators, allows in the
multidimensional case for inferences based not only on values for
specific coordinates of a tested element, but above all on the rela-
tions between them.

4. Extended pattern of population

Although, from a theoretical point of view, the procedure pre-
sented in the previous section seems complete, when the values r
are applied in practice − see conditions (13) and especially (14) −
and the size m is not big, the estimator of the quantile q̂r is encum-
bered with a large error, due to the low number of elements zi
smaller than the estimated value. To counteract this, a data set will
be extended by generating additional elements with distribution
identical to that characterizing the subject population, based on
set (10).

The methodology for enlarging a set representative for the
investigated population is suggested using von Neumann’s elim-
ination concept [22]. This allows the generation of a sequence of
random numbers of distribution with support bounded to the inter-
val [a, b], while a < b, characterized by the density f of values limited
by the positive number c, i.e.
f (x) ≤ c for every x ∈ [a,b].  (21)

In the multidimensional case, the interval [a, b] generalizes to the
n-dimensional cuboid [a1, b1] × [a2, b2] × ... × [an, bn], while aj < bj
for j = 1, 2, . . .,  n.
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First the one-dimensional case is considered. Let us generate
wo pseudorandom numbers u and v of distribution uniform to the
ntervals [a, b] and [0, c], respectively. Next one should check that

 ≤ f (u). (22)

f the above condition is fulfilled, then the value u ought to be
ssumed as the desired realization of a random variable with dis-
ribution characterized by the density f, that is

 = u. (23)

n the opposite case the numbers u and v need to be removed and
teps (22)-(23) repeated, until the desired number of pseudoran-
om numbers x with density f is obtained.

In the presented procedure the density f is established by the
ernel estimators methodology, described in Section 2. Denote its
stimator as f̂ . The uniform kernel will be employed, allowing easy
alculation of the support boundaries a and b, as well as the param-
ter c appearing in condition (21). Namely:

 = min
i=1,2,...,m

xi − h (24)

 = max
i=1,2,...,m

xi + h (25)

nd

 = max
i=1,2,...,m

{
f̂ (xi − h) , f̂ (xi + h)

}
. (26)

he last formula results from the fact that the maximum for a kernel
stimator with the uniform kernel must occur on the edge of one
f the kernels. It is also worth noting that calculations of param-
ters (24)-(26) do not require much effort. This is thanks to the
ppropriate choice of kernel form, taking advantage of the kernel
stimators’ robustness in form.

In the multidimensional case, von Neumann’s elimination algo-
ithm is similar to the previously discussed one-dimensional
ersion. The edges of the n-dimensional cuboid [a1, b1] × [a2,
2] × ... × [an, bn] are calculated from formulas comparable to (21)-
23) separately for particular coordinates. The kernel estimator

aximum is thus located in one of the corners of one of the kernels;
herefore

 = max
i=1,2,...,m

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f̂

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣
xi,1 ± h

xi,2 ± h

.

.

.

xi,n ± h

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

following all combinations of ± . (27)

he number of these combinations is finite and equal to 2n. Using
he formula presented, n particular coordinates of pseudorandom
ector u and the subsequent number v are generated, after which
ondition (22) is checked.

The results of verification presented in Sections 6 and 7 show
hat for the properly extended set (10), the procedure investigated
ere for identifying atypical elements allows us to obtain a propor-
ion of this type of element throughout the whole population, with
reat accuracy, sufficient from an applicational point of view.

. Equal-sized patterns of atypical and typical elements;
uzzy and intuitionistic fuzzy evaluations

Let us consider set (10) introduced in Section 3, consisting of
lements representative for an investigated population, and poten-
ially extended as described in accordance with Section 4. In taking
ts subset comprising these observations xi for which condition (19)

s fulfilled, one can treat it as a pattern of atypical elements. Denote
t thus:

at
1 , xat2 , ..., xatmat . (28)
ft Computing 60 (2017) 623–633

Similarly, the set of observations for which the opposite inequality
(20) is true may  be considered as a pattern of typical elements:

xt1, xt2, ..., xtmt . (29)

Sizes of the above patterns equal respectively mat and mt. Of course
mat + mt = m; we  also have

mat
mat + mt

∼= r. (30)

In this way, unsupervised in its nature, the problem of identifying
atypical elements has been reduced to a supervised classification
task, although with strongly unbalanced patterns − taking into
account relation (30) with (14), set (28) is in practice around 10–100
times smaller than (29). Classification is relatively conveniently
conditioned and can use many different well developed methods.
However most procedures work much better if patterns are of
similar or even equal sizes [23]. Using once again the algorithm
presented in Section 5, the size of the set can be increased to mt,
so that mat = mt, thus equaling patterns of atypical (28) and typical
(29) elements.

Finally, a method for the unsupervised identification of atypical
elements, has been thus brought to supervised classification with
two patterns of equal, relatively large size, thereby creating the
conveniently conditioned task with rich and diverse methodology,
allowing for the selection of the best procedure regarding the char-
acter of the problem and user preferences. Sections 6 and 7 have
shown the results obtained with a decision tree. Moreover, equal-
ing patterns of atypical and typical elements enables the effective
evaluation of typicality of an element in fuzzy [5] and intuitionistic
fuzzy [6] form, also for disadvantageous conditions, especially for
small values of the parameter r and size m.  The following part of
this section will present the proper formulas to this end.

Take the mean values of the kernel estimator f̂ on atypical ele-
ments (28)

sat = 1
mat

mat∑
i=1

f̂ (xati ) (31)

as well as on typical (29)

st = 1
mt

mt∑
i=1

f̂ (xti ). (32)

Similarly, consider mean squares of deviations for both patterns
representing atypical and typical elements respectively

vat = 1
mat

mat∑
i=1

[sat − f̂ (xati )]
2

(33)

vt = 1
mt

mt∑
i=1

[st − f̂ (xti )]
2
. (34)

Let us define so-called reference values for sets of atypical wat as
well as typical wt elements

wat = 0 (35)

Let for any x ∈ Rn, the functions dat:Rn → [0, ∞)  and dt:Rn → [0, ∞)
be given as

2 (x − wat)
2

dat(x) =
vat

(37)

d2
t (x) = (x − wt)

2

vt
, (38)
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nformally (they do not fulfil the conditions of a metric or even
emi-metric) illustratively interpretable as “distances” from refer-
nce values (35)-(36), standardized by variances (33)-(34), in sets of
typical and typical elements. With the above notations, the mem-
ership function for the set of atypical elements �at:Rn → [0, 1] is
efined by the formula

at(x) = 1

1 +
(
dat (x)
dt (x)

) 2
cf

= 1

1 +
(
d2
at (x)

d2
t (x)

) 1
cf

, (39)

here the parameter cf > 0 makes for the degree of fuzziness (stan-
ard assumed cf = 1). Concerning correct interpretation it is worth
odifying in formulas (37) and (38) the parameters vat and vt

nversely proportional, i.e. vat is replaced by avat and vt by vt/a,
hile a > 0. Initially it is assumed that a = 1, after which its value

espectively increases or decreases to get �at(y) ∼= 0, 5, where y is
uch element that f̂ (y) ∼= q̂r .

The above procedure can be supplemented to generate intu-
tionistic fuzzy evaluation. Similar to formulas (35)–(38) the
distance” from the quantile estimator dhm :Rn → [0, ∞)  transposed
hrough the reference point whm > 0 can be introduced, given by

2
hm(x) =

⎧⎪⎪⎨
⎪⎪⎩
whm + (q̂r − f̂ (x))

2

vat
for f̂  (x) ≤ q̂r

whm + (f̂ (x) − q̂r)
2

vt
for f̂  (x) ≥ q̂r

. (40)

articular functions defining an intuitionistic fuzzy set are
escribed by the following formulas:

– the function �at:Rn → [0, 1] of membership to the set of atyp-
cal elements

at(x) = 1

1 +
(
dat (x)
dt (x)

) 2
cf +
(
dat (x)
dhm(x)

) 2
cf

= 1

1 +
(
d2
at

(x)

d2
t

(x)

) 1
cf +
(

d2
at

(x)

d2
hm

(x)

) 1
cf

, (41)

– the function �at:Rn → [0, 1] of non-membership to the set of
typical elements (membership to the set of typical elements)

at(x) = 1

1 +
(
dt (x)
dat (x)

) 2
cf +
(

dt (x)
dhm(x)

) 2
cf

= 1

1 +
(

d2
t

(x)

d2
at

(x)

) 1
cf +
(

d2
t

(x)

d2
hm

(x)

) 1
cf

, (42)

– the function �at:Rn → [0, 1] hesitation margin

at(x) = 1 − �at(x) − �at(x), (43)

here cf > 0 is a parameter indicating the degree of fuzziness
standard cf = 1). The parameters vat and vt are modified inversely
roportional, i.e. vat is replaced in formulas (37), (38) and (40)
ith avat, and vt with vt/a,  while a > 0. Initially it is assumed that

 = 1, after which its value respectively increases or decreases, to
et �at(y) ∼=�at(y), where y is such an element that f̂ (y) ∼= q̂r . The
alue of the parameter whm should be established on the basis
f individual conditions for the task under investigation. Initially
ne can assume whm = 0.001, and then increase depending on the
esired level of �at(y), where y as previously is such an element
hat f̂ (y) ∼= qr; for instance �at(y) = 0.5.

Finally the correctness of the definitions introduced by formulas
31)–(43) should be proven. For the sake of shortening comments,

 kernel estimator constructed using the normal kernel will be
onsidered.

As for any z ∈ R the inverse image K−1(z) has at the most two
oints, then the inverse image f̂ −1(z) contains at most a finite num-
er of points from Rn. This implies that vat /= 0 and vt /= 0 with

robability 1 (in the opposite case the density f, the existence of
hich was assumed in Section 3, would not occur). This frees the

ractions appearing in formulas (37), (38) and (40) from dominators
qualing zero.
ft Computing 60 (2017) 623–633 627

Considering condition (36) it is worth first noting that a max-
imum of the function f̂ in the set Rn appears in a dense region of
elements xt

i
. Moreover, as per Section 5, the size of this set under-

goes significant growth. This means that in practice max
i=1,2,...,mt

f̂ (xt
i
) ∼=

max
x ∈ Rn

f̂ (x). Then, thanks to the introduction of reference values

(35)-(36), the interval [ min
i=1,2,...,mat

f̂ (xat
i

), max
i=1,2,...,mt

f̂ (xt
i
)] has been

extended in both directions to the interval [wnt, wt] by the irrele-
vant value min

i=1,2,...,mat
f̂ (xat

i
), which results in the functions dnt and dt

being positive. And finally, thanks to assumption whm > 0, the func-
tion dhm also takes on positive values. This allows to avoid zeroes
as denominators in formulas (39), (41) and (42).

As dat/dt ∈ (0,  ∞)  thus �at(x) ∈ [0, 1]. Additionally dt/dhm ∈
(0, ∞)  implies �at(x) ∈ [0, 1]. It remains only to be shown that
�at(x) ∈ [0, 1]. Denote, using the right-sides of equalities (41)-(42):

�at(x) + �at(x) = 1

1 +
(
d2
at

(x)

d2
t

(x)

) 1
cf +
(

d2
at

(x)

d2
hm

(x)

) 1
cf

+ 1

1 +
(

d2
t

(x)

d2
at

(x)

) 1
cf +
(

d2
t

(x)

d2
hm

(x)

) 1
cf

.

(44)

Multiplying nominator and denominator of the first fraction by(
d2
t (x)d2

hm
(x)
)1/cf and the second by

(
d2
at(x)d

2
hm

(x)
)1/cf it possible

to obtain, after elementary alterations

�at(x) + �at(x) =

(
d2
t (x)d2

hm
(x)
)1/cf +

(
d2
at(x)d

2
hm

(x)
)1/cf(

d2
t (x)d2

hm
(x)
)1/cf +

(
d2
at(x)d

2
hm

(x)
)1/cf +

(
d2
at(x)d

2
t (x)
)1/cf

. (45)

Because all components existing in the above fraction are positive,
the entire fraction belongs to the interval [0, 1], therefore from
definition (43) we have also �at(x) ∈ [0, 1], which was to be proven.

Finally it is notable that, although the procedure for generating
fuzzy and intuitionistic fuzzy evaluations has been presented in its
general form with equal-sized patterns (as above per Section 5), if
the values of the parameter r and sample size m are not particularly
small, then in most cases it is enough to apply it already for the
extended pattern (as in Section 4 but not necessarily for equal-sized
patterns).

6. Numerical verification

This section presents the results of numerical verification, which
positively confirmed the correct functioning of the procedure for
identifying atypical elements. Thus those obtained for real data
taken from medicine are described in the subsequent Section 7.

Consider therefore the one-dimensional case, where the dis-
tribution characterizing the data in set (10) is bimodal with the
following normal (Gauss) components and shares

N(−3, 1) 40%, N(3, 1) 60%. (46)

Table 1 shows results achieved with the basic version of the proce-
dure presented in Section 3. Note that the greater size m,  the closer
the mean value of obtained proportions of identified atypical ele-
ments with respect to the number of tested elements converges to
the assumed value of the parameter r, and the standard deviation
nears zero. Thus, a 10-percent accuracy in proportions of these ele-
ment types, for the parameter r value, was  obtained when r = 0.1
with size m = 500, when r = 0.05 with m = 1,000, when r = 0.01 with
m = 2,000. In most practical applications, these quantities may  not

be satisfactory. This proves empirically the sense of extending the
pattern characterizing the population as shown in Section 4.

Fig. 1, in turn, illustrates placing of elements identified as atyp-
ical and typical. The former is not only found in distribution tails,
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Fig. 1. Placement of atypical (dark circles) and typical (light circles) elements, apply-
ing  the basic version of the procedure, for bimodal distribution (46); m = 1,000.

Table 1
Proportions of number of elements identified as atypical, applying the basic version
of  the procedure, for bimodal distribution (46).

r\m 0.1 0.05 0.01

10 0.212 ± 0.119 0.165 ± 0.127 0.004 ± 0.011
20  0.163 ± 0.067 0.099 ± 0.059 0.010 ± 0.014
50  0.130 ± 0.046 0.077 ± 0.039 0.031 ± 0.025
100  0.122 ± 0.036 0.065 ± 0.024 0.018 ± 0.011
200  0.115 ± 0.026 0.060 ± 0.019 0.016 ± 0.008
500  0.108 ± 0.015 0.056 ± 0.010 0.012 ± 0.005
1000 0.106 ± 0.011 0.053 ± 0.008 0.012 ± 0.003
2000 0.105 ± 0.008 0.053 ± 0.005 0.011 ± 0.002
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Fig. 2. Fuzzy evaluation; membership functions for sets of atypical (continuous line)
and typical (broken line) elements and density (dotted line) for bimodal distribution
(46); r = 0.1, m = 1,000, m* = 10,000.

Fig. 3. Intuitionistic fuzzy evaluation; membership functions for sets of atypical
(continuous line), typical (broken line) elements and hesitation margin (dotted-
5000 0.104 ± 0.005 0.052 ± 0.003 0.010 ± 0.001
10,000 0.103 ± 0.003 0.052 ± 0.002 0.010 ± 0.001

ut also “inside”, which is due directly to possibilities of nonpara-
etric estimation methodology. The greater the parameter r value,

he greater their respective sizes. The smaller share of component
(−3, 1) with respect to N(3, 1), implies that the left regions of
typical elements are slightly smaller than those on the right.

Table 2 contains the results obtained using the procedure
xtending the pattern for the population, as presented in Section 4.
attern (10) of size m was used to generate the set of size m*,  while
* > m is justified from a practical perspective. The specific case of
*  = m was included solely for research purposes.

It is worth noting that together with a growth in value of both
arameter m and m*, the mean value of the proportions of elements

dentified as atypical compared to the number of tested elements
s ever closer to the assumed value of the parameter r, and the stan-
ard deviation nears zero. This property with respect to the size m
as already true for the basic version of the procedure (see. Table 1).
ow, however − after introducing the parameter m*  − this takes on
n additional practical meaning: by increasing the number of gen-
rated elements one can significantly improve the quality of results.
hus, a 10-percent accuracy in proportions of these elements, with
espect to the parameter r value, was obtained:

 when r = 0.1, for every m ≥ 10 with any m*  ≥ 100 (in the basic ver-
ion such precision comes only at m = 500);

 when r = 0.05, for every m ≥ 20 with any m*  ≥ 200 (in the basic
ersion, only at m = 1,000);

 in the difficult case of r = 0.01, for every m ≥ 100 with m*  ≥ 10,000
in the basic version such this occurs only at m = 2,000).
he above quantities seem to be very satisfactory for the majority
f practical applications. In generating additional elements of the

opulation pattern, effects are achieved similar to sizes 10- or even
0-times extended.

It is interesting to observe results for m = m*,  so on the diagonal
f Table 2. This shows the case when a sample is generated with the
broken line), with density (dotted line) for bimodal distribution (46); r = 0.1,
m  = 1,000, m* = 10,000.

size equal to set (10). In comparison, we  can see that the results are
better than those obtained for the basic version of the procedure
(Table 1). This may  be explained by stabilization, of sorts, of results,
“filtered” through the distribution calculated for set (10). Such a
positive “initial condition” provides additional motivation for the
concept of extending the population size, investigated in Section 4.

Finally, we  will show the concept presented in Section 6, demon-
strating the possibility of presenting the evaluation of atypicality
of a tested element in fuzzy and intuitionistic fuzzy form, as well
as the effective application of suitable and diverse methodology of
classification for equalized sizes of patterns. The latter aspect will
be illustrated by synthesis of a decision tree.

Fig. 2 displays the fuzzy evaluation. The membership functions
to the sets of atypical and typical elements were shown there. The
results are in line with intuition. It is worth noting that part of the
membership function for the set of atypical elements in the region
of the component N(− 3, 1) assumes slightly lower values than in
the region of the component N(3, 1) with a greater and therefore
more distinct share. Similar conclusions concern the intuitionistic
fuzzy evaluation shown in Fig. 3. Additionally, the hesitation margin
function in the area of less distinct component N(−3, 1) is bigger
than in that of the clearer component N(3, 1). Local maximums for
the hesitation margin function are located on the assumed level
0.5. The regularity of results was obtained thanks to an extension
of population pattern size and equaling numbers of atypical and
typical patterns elements.

Fig. 4 presents an exemplary decision tree attained for bimodal
distribution (46). It was constructed using the CART (Classification

and Regression Trees) algorithm [24]. Decision trees offer an illustra-
tive interpretation of a problem, as well as the valuable possibility
to modify and adapt the inference mechanism. While using the
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Table  2
Proportions of number of elements identified as atypical applying the extended pattern of population for bimodal distribution (46).

r = 0.1

m\m* 10 20 50 100 200 500 1,000 2,000 5,000 10,000

10 0.138 ± 0.104 0.127 ± 0.088 0.117 ± 0.081 0.108 ± 0.074 0.107 ± 0.072 0.105 ± 0.070 0.104 ± 0.069 0.104 ± 0.069 0.104 ± 0.068 0.105 ± 0.069
20  — 0.105 ± 0.071 0.099 ± 0.052 0.100 ± 0.048 0.097 ± 0.044 0.095 ± 0.043 0.094 ± 0.042 0.094 ± 0.043 0.093 ± 0.042 0.094 ± 0.042
50  — — 0.103 ± 0.051 0.102 ± 0.046 0.098 ± 0.039 0.094 ± 0.033 0.093 ± 0.031 0.093 ± 0.031 0.092 ± 0.031 0.093 ± 0.031
100  — — — 0.104 ± 0.039 0.100 ± 0.036 0.096 ± 0.029 0.095 ± 0.028 0.095 ± 0.027 0.094 ± 0.026 0.094 ± 0.026
200  — — — — 0.099 ± 0.033 0.097 ± 0.026 0.096 ± 0.023 0.096 ± 0.022 0.096 ± 0.021 0.096 ± 0.021
500  — — — — — 0.096 ± 0.018 0.095 ± 0.015 0.096 ± 0.014 0.095 ± 0.013 0.095 ± 0.012
1,000  — — — — — — 0.096 ± 0.014 0.097 ± 0.012 0.097 ± 0.010 0.098 ± 0.010
2,000  — — — — — — — 0.099 ± 0.010 0.099 ± 0.008 0.099 ± 0.008
5,000  — — — — — — — — 0.099 ± 0.006 0.100 ± 0.005
10,000  — — — — — — — — — 0.101 ± 0.004

r  = 0.05

m\m* 10 20 50 100 200 500 1,000 2,000 5,000 10,000

10 0.112 ± 0.101 0.092 ± 0.072 0.076 ± 0.069 0.066 ± 0.063 0.064 ± 0.063 0.062 ± 0.057 0.061 ± 0.057 0.061 ± 0.056 0.061 ± 0.056 0.061 ± 0.056
20  — 0.097 ± 0.074 0.061 ± 0.044 0.056 ± 0.037 0.054 ± 0.033 0.052 ± 0.031 0.051 ± 0.031 0.051 ± 0.032 0.051 ± 0.032 0.051 ± 0.032
50  — — 0.058 ± 0.036 0.057 ± 0.033 0.053 ± 0.028 0.050 ± 0.024 0.048 ± 0.023 0.049 ± 0.022 0.048 ± 0.023 0.048 ± 0.023
100  — — — 0.052 ± 0.026 0.051 ± 0.026 0.047 ± 0.019 0.047 ± 0.018 0.047 ± 0.017 0.047 ± 0.017 0.047 ± 0.017
200  — — — — 0.052 ± 0.022 0.050 ± 0.017 0.049 ± 0.016 0.049 ± 0.015 0.048 ± 0.014 0.048 ± 0.014
500  — — — — — 0.051 ± 0.014 0.049 ± 0.010 0.049 ± 0.009 0.048 ± 0.009 0.048 ± 0.009
1,000  — — — — — — 0.049 ± 0.010 0.049 ± 0.008 0.048 ± 0.007 0.049 ± 0.007
2,000  — — — — — — — 0.050 ± 0.007 0.049 ± 0.006 0.050 ± 0.005
5,000  — — — — — — — — 0.050 ± 0.004 0.050 ± 0.004
10,000  — — — — — — — — — 0.050 ± 0.003

r  = 0.01

m\m* 10 20 50 100 200 500 1,000 2,000 5,000 10,000

10 0.003 ± 0.009 0.008 ± 0.017 0.035 ± 0.044 0.031 ± 0.043 0.029 ± 0.042 0.027 ± 0.036 0.027 ± 0.036 0.027 ± 0.036 0.026 ± 0.036 0.027 ± 0.037
20  — 0.007 ± 0.010 0.027 ± 0.025 0.021 ± 0.020 0.019 ± 0.019 0.019 ± 0.020 0.018 ± 0.018 0.018 ± 0.018 0.018 ± 0.018 0.018 ± 0.018
50  — — 0.023 ± 0.021 0.019 ± 0.015 0.017 ± 0.013 0.016 ± 0.012 0.015 ± 0.011 0.015 ± 0.011 0.015 ± 0.011 0.015 ± 0.011
100  — — — 0.016 ± 0.013 0.013 ± 0.009 0.012 ± 0.008 0.012 ± 0.008 0.012 ± 0.007 0.011 ± 0.007 0.011 ± 0.007
200  — — — — 0.015 ± 0.010 0.013 ± 0.007 0.012 ± 0.006 0.012 ± 0.006 0.012 ± 0.006 0.011 ± 0.005
500  — — — — 0.011 ± 0.006 0.011 ± 0.004 0.010 ± 0.004 0.010 ± 0.003 0.010 ± 0.003
1,000  — — — — — — 0.010 ± 0.004 0.010 ± 0.003 0.010 ± 0.003 0.010 ± 0.003
2,000  — — — — — —
5,000  — — — — — —
10,000  — — — — — —
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ig. 4. Decision tree for bimodal distribution (46); r = 0.1, m = 1,000, m* = 10,000.

pparatus obtained in this way, one can trace “flow” of tested ele-
ents and based on fundamental analysis, change thresholds of

articular nodes.

. Experimental verification

Laboratory research is a fundamental factor of contemporary
edical practice and the most important source of information

or making correct medical decisions. This section describes the

mplementation of the procedure worked out for identifying atypi-
al elements, using experimental data from biochemical blood tests
oncerning plasma component analysis or, to be more precise, con-
entration of electrolytes: glucose, potassium and sodium. The data
 — 0.010 ± 0.003 0.010 ± 0.002 0.010 ± 0.002
 — — 0.010 ± 0.002 0.010 ± 0.001
 — — — 0.010 ± 0.001

used below originates from the National Health and Nutrition Exam-
ination Survey, carried out in the USA in 2007–08 [25]. In general,
clinical interpretation of results of this type of laboratory research
consists of comparisons with ranges of references values. In order
to define the degree by which a given result diverges from the norm,
evaluations of intensity of a case are described using the standard
terminology of the National Cancer Institute [26]. The scale has five-
levels: 0, 1, 2, 3, 4. Thus, level zero denotes a measurement within
the laboratory norm, level one refers to the mildest dispersal and
is not pathological, while the higher levels represent degrees of
full-symptomic changes, with the potential to worsen the patients’
functioning.

As well as the one-dimensional variables characterizing the
three individual electrolytes − glucose, potassium and sodium −
their two-dimensional combinations were also investigated. Shares
of elements from the analyzed database, qualified to levels 0–4
based on standard reference research, are shown in Table 3. They
served to define the values of the parameter r, describing the
sensitivity of the procedure for identifying atypical elements. For
particular factors, the value of this parameter is equal to the sum of
shares in levels 1–4. It is presented in the second column of Table 4.

For analysis, the procedure for identifying atypical elements
worked out here, was  used by extending the size of set (10) to
m* = 10,000. Table 5 shows the results accounting for the degree

of severity of illness. Thus, all elements belonging to levels 2, 3 and
4 were considered atypical observations, while at level 1 – not yet
signifying a pathology − this applied to about half of the speci-
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Table  3
Shares of particular levels 0–4.

Electrolyte Level 0 Level 1 Level 2 Level 3 Level 4

Glucose 0.757 0.106 0.095 0.041 0.001
Potassium 0.891 0.058 0.034 0.014 0.003
Sodium 0.872 0.109 0.011 0.007 0.001
Combination of glucose and potassium 0.681 0.139 0.121 0.055 0.004
Combination of glucose and sodium 0.663 0.183 0.105 0.047 0.003
Combination of potassium and sodium 0.787 0.147 0.041 0.021 0.004

Table 4
Obtained shares of atypical elements.

Electrolyte r Share of identified atypical elements Error

Glucose 0.243 0.250 2.9%
Potassium 0.109 0.105 3.7%
Sodium 0.128 0.129 0.8%
Combination of glucose and potassium 0.319 0.309 3.1%
Combination of glucose and sodium 0.337 0.333 1.2%
Combination of potassium and sodium 0.213 0.213 0.0%

Table 5
Obtained shares of atypical elements, accounting for level of severity.

Electrolyte Level 0 Level 1 Level 2 Level 3 Level 4

Glucose 0.040 (5.2%) 0.070 (68.5%) 0.097 (100.0%) 0.043 (100.0%) 0.001 (100.0%)
Potassium 0.031 (3.4%) 0.024 (44.0%) 0.032 (100.0%) 0.014 (100.0%) 0.005 (100.0%)
Sodium 0.038 (4.4%) 0.080 (66.1%) 0.006 (100.0%) 0.004 (100.0%) 0.001 (100.0%)
Combination of glucose and potassium 0.049 (7.3%) 0.080 (54.6%) 0.125 (99.8%) 0.052 (100.0%) 0.003 (100.0%)
Combination of glucose and sodium 0.050 (7.8%) 0.117 (61.2%) 0.115 (100.0%) 0.050 (100.0%) 0.001 (100.0%)
Combination of potassium and sodium 0.054 (7.1%) 0.092 (56.1%) 0.046 (100.0%) 0.019 (100.0%) 0.002 (100.0%)

Fig. 5. Glucose; location of atypical (dark circles) and typical (light circles) elements.
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ig. 6. Combination of glucose and potassium; location of atypical (dark circles) and
ypical (light circles) elements.

ens. This provided an argument for using fuzzy or intuitionistic
uzzy evaluations. About 5% of elements belonging to level 0 were

apped to level 1. It worth noting the possibility of modifying the
arameter r value depending on preferences of probability of mis-
lassifying atypical elements as typical and vice versa, subject to the
pecific conditions of the problem.

The location of atypical and typical elements are shown in Fig. 5
sing glucose as an example and in Fig. 6 for the combination of

lucose and potassium. Atypical elements occur irregularly in very
arge – compared to typical − area, while the set of typical elements
s compact and strictly defined. The latter provides strong cause for
Fig. 7. Glucose; fuzzy evaluation; membership functions for atypical (continuous
line) and typical (broken line) elements.

the unsupervised task of identification of atypical elements, based
only on patterns of typical elements.

Next, Figs. 7 and 8 express fuzzy and intuitionistic fuzzy evalua-
tions again using glucose as an example, whereas Figs. 9–11 display
the intuitionistic fuzzy appraisal for the exemplary combination of
glucose and potassium (the fuzzy readout corresponds to Fig. 9).
In turn, Fig. 12 presents a decision tree created for equal-sized
patterns for the combination of glucose and potassium. A funda-
mental analysis of these evaluation types brings great possibilities
to enhance a model as information concerning its correctness is
obtained, and flexibly adapt it to a changing environment. The two-
dimensional cases in Figs. 9–12 are a valuable supplement to the
numerical verification of Section 6, where only one-dimensional
problems were considered.

So finally, The research contained in this section confirmed

the usefulness also of the concept presented here for real data.
The outcome was  comparable to reference results, albeit without
the necessity for laborious fundamental analysis. By appropriately
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Fig. 8. Glucose; intuitionistic fuzzy evaluation; membership functions for atypi-
cal (continuous line) and typical (broken line) elements, and hesitation margins
(broken-dotted line).

Fig. 9. Combination of glucose and potassium; intuitionistic fuzzy evaluation; mem-
bership function for atypical elements.
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Fig. 11. Combination of glucose and potassium; intuitionistic fuzzy evaluation; hes-
itation margin function.

manner. First − to structure the description − let us create three
ig. 10. Combination of glucose and potassium; intuitionistic fuzzy evaluation;
embership function for typical elements.

odifying the parameter r value one can influence the probability

f mistakenly identifying typical elements as atypical and the other
ay round, depending on the actual conditions of the problem

nder investigation. Formulating the result in fuzzy or intuitionistic
Fig. 12. Combination of glucose and potassium; decision tree.

fuzzy form, as well as the possibility of using various classification
apparatus, e.g. in tree form, provides further analytical potential.

8. Summary

This paper deals with a procedure for identifying atypical ele-
ments constructed using nonparametric methods of mathematical
statistics, which frees the investigated concept from distribution
characterizing the data set under analysis. Atypical elements are
understood to be rarely occurring. The procedure sensitivity is
defined by a single parameter, interpreted as share of atypical ele-
ments in the population. The text contains a complete formula for
the algorithm, without need for additional subject research.

Besides the basic version of the procedure, which has mostly
motivational significance, a concept was presented using the
extended size of a population pattern. It allows in practice shares
close to the assumed values to be obtained. The next version with
equal-size patterns of atypical and typical elements, enables the
effective generation of fuzzy and intuitionistic fuzzy evaluations,
as well as the application of differing, well-developed classification
methodology also for disadvantageous conditioning parameter val-
ues. In this area decision trees were considered as examples, with
significant illustratory and interpretative values among others. A
task unsupervised in nature, for identifying atypical parameters
was thus transformed to a supervised one.

Summarizing the concept presented in this paper, the inves-
tigated method can be synthetically described in the following
subroutines:
A. for constructing the kernel estimator f̂

having the set x1, x2, . . .,  xm and fixed type of kernel (2) or (3), one
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alculates the values for the smoothing parameter h (6) applying
7) as well as (8) or (9), respectively (in the multidimensional case
eparately for each coordinate), and then uses formula (1) or in the
ultidimensional case (4)-(5), with (2) or (3);

B. for calculating the value of the quantile estimator q̂r
aving the number r and the set f̂ (x1), f̂ (x2), ..., f̂ (xm), one sorts its

 + 1 (while i is given by (16)) lowest values, creating the subset z1,
2, . . .,  zi+1 of set (17), then applies formula (15) with (16);

C. for extending the pattern, i.e. defining the set x1, x2, ..., xm∗

aving the set x1, x2, . . .,  xm and constructed the kernel estimator
ith uniform kernel (subroutine A), one calculates the numbers a,

, c (24)-(26) and generates a m*-element pseudorandom set, using
lgorithm (22)-(23).

Now − to calculate three different types of evaluation − let us
ntroduce the next three subroutines:

D. for the two-values evaluation
aving the tested element x̃, the constructed kernel estimator f̂
ith normal kernel (subroutine A) and the quantile estimator q̂r

subroutine B), one checks for fulfilment of condition (19) imply-
ng that the element x̃ is atypical, or (20) and then it should be
onsidered typical;

E. for fuzzy evaluation
aving the tested element x̃, the set x1, x2, . . .,  xm, the constructed
ernel estimator f̂ with normal kernel (subroutine A) and the
uantile estimator q̂r (subroutine B), one divides its elements into
ubsets of atypical xat1 , xat2 , ..., xatmat (28) and typical xt1, xt2, ..., xtmt
29) elements, and then subsequently calculates the parameters
at, st (31)-(32), vat, vt (33)-(34), wat, wt (35)-(36) and − for fixed x

 the values d2
at(x), d2

t (x) (37)-(38) and lastly the value of the mem-
ership function �at(x) (39), paying attention to the procedures
escribed below formula (39); the latter steps can be carried out

or the required range of the argument x;
F. for intuitionistic fuzzy evaluation

aving the tested element x̃, the set x1, x2, . . .,  xm, the constructed
ernel estimator f̂ with normal kernel (subroutine A) and the
uantile estimator q̂r (subroutine B), one divides its elements into
ubsets of atypical xat1 , xat2 , ..., xatmat (28) and typical xt1, xt2, ..., xtmt
29) elements, and then subsequently calculate the parameters sat,
t (31)-(33), vat, vt (33)-(34), wat, wt (35)-(36) and − for fixed x −
he values d2

at(x), d2
t (x), d2

hm
(x) (37)-(38), (40) and lastly the val-

es of the membership, non-membership and hesitation margin
unctions �at(x), �at(x), �at(x) (41)-(43), paying attention to the
rocedures described below formula (43); the latter steps can be
arried out for the required range of the argument x.

Let us thus assume that, at the beginning the following data is
t our disposal:

 the set of elements representative for a population x1, x2, . . .,  xm

(10);
 the number r determining the share of atypical elements (12)-
(14);

 the tested element x̃ (18).
First a design is presented for an evaluation of whether a tested

lement should be considered atypical or typical, with two-values
deterministic/sharp) and/or fuzzy and/or intuitionistic fuzzy eval-
ations. The procedure has three phases, with each one increasing
he accuracy of results. Thus, firstly

G. construct the kernel estimator f̂  using subroutine A.
n undemanding cases, especially with large values for the param-
ter r and the size m, the basic version of the procedure (Section 3)
ay  be enough. In this situation

H. calculate the values of the kernel estimator f̂ with normal
kernel for elements x1, x2, . . .,  xm, so f̂ (x1), f̂ (x2), ..., f̂ (xm),
ext compute the quantile estimator value (subroutine B), and
epending on whether we need two-valuable, fuzzy or intuition-

stic fuzzy evaluation, apply subroutine, D, E or F, respectively.
owever, in most research cases it will be significantly more advan-
ft Computing 60 (2017) 623–633

tageous − which should be particularly underlined − to increase
the size of the pattern of elements characteristic for a population;
therefore:

I. extend the set x1, x2, . . .,  xm (10) do x1, x2, ..., xm∗ using
subroutine C,

after this − for such an extended set − apply step H defined above,
and then calculate the quantile estimator value (subroutine B) and,
depending on whether we need two-valuable, fuzzy or intuitionis-
tic fuzzy evaluation, use subroutine, G, H or I, respectively. However
for especially small values of the parameter r and the size m − when
we search for fuzzy and intuitionistic fuzzy evaluations − it is worth
equalizing patterns of atypical and typical elements. To this aim,
having the above calculations, one should also:

J. divide the set x1, x2, ..., xm∗ into the subsets of atypical (28) and
typical (29) elements; with respect to set (28) apply subroutine
C increasing its size to that of set (29),

and depending or whether we  need fuzzy or intuitionistic fuzzy
evaluation use for such obtained sets subroutine E or F, respectively
(remember that in their descriptions, sets (28)-(29) have already
been calculated in step J).

Finally, a design will be presented for equalizing the atypical
and typical sets in extended size. For this purpose one should sim-
ply apply consecutively the above procedures G, H, I and J. Through
this supervised classification methods can be used for the natu-
rally unsupervised task of identification of atypical elements, in
advantageous conditions.

The operation of the presented procedure was verified using
artificially generated sets with a distinct character. The concept’s
independence from a distribution characterizing an analyzed set
(in particular multimodality) as well as the dimensionality of a
problem was  shown. Although for illustrative purposes one- and
two-dimensional cases were considered, besides the required set
size and computational time, there are no methodological limits in
this matter. The obtained results confirmed the proposed concept
and proved the correct functionality of the algorithm and offered
indication as to its practical uses. Finally sample applications of
the worked out procedure were described, in the field of con-
temporary medicine, based on real experimental data. One should
however underline that the general design is universal in charac-
ter and can be employed in many various tasks of modern science
and practical applications including engineering, econometrics and
management, sociology, as well as nature studies.

It is also worth mentioning the computational complexity of
the investigated method. Thus, calculation of the set (11) values
has quadratic complexity with respect to the size m or m*,  as
does the entire procedure, whose particular algorithms are linear
or quadratic. However, after defining the model’s parameters, the
actual application of the procedure with respect to a single tested
element is of linear complexity. It is, therefore, worth stressing the
possibility of the problem decomposition, and for practical uses it is
to be recommended that the time-consuming computation of the
model parameters values be carried out earlier, leaving only rapid
testing to be done on-line.
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